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Stochastic lattice models with several absorbing states

Haye Hinrichsen
Department of Physics of Complex Systems, Weizmann Institute, Rehovot 76100, Israel

~Received 15 August 1996!

We study two models withn equivalent absorbing states that generalize the Domany-Kinzel cellular au-
tomaton and the contact process. Numerical investigations show that forn52 both models belong to the same
universality class as branching annihilating walks with an even number of offspring. Unlike previously known
models, these models have no explicit parity conservation law.@S1063-651X~97!07401-1#

PACS number~s!: 05.70.Jk, 05.70.Ln, 64.60.Ak
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I. INTRODUCTION

The study of stochastic lattice models exhibiting a co
tinuous phase transition from an active phase into an abs
ing state is a field of growing interest. In these models
dynamical processes take place close to an absorbing s
i.e., a configuration once reached, the system cannot es
from. Most of them belong to the universality class of d
rected percolation~DP!; the best known examples are D
lattice models@1#, the Domany-Kinzel cellular automato
@2#, the contact process@3#, Schlögl’s first and second mode
@4#, and branching annihilating walks with an odd number
offsprings@5#. In a field-theoretical formulation these mode
can be related to Reggeon field theory@6#, which was proven
to be in the same universality class as directed percola
@7#.

The variety of DP models led Janssen and Grassberg
the conjecture that in one-component models all continu
phase transitions from an active phase to asingleabsorbing
state are in the DP universality class@8#. However, the
known examples for DP include even more complicated s
tems, e.g., multicomponent systems@9# and models with sev-
eral absorbing states@10#. Some models that were initially
thought to be in different classes were later found to belo
to the DP class as well@11#. Thus the directed percolatio
universality class is extremely robust and covers a w
range of models.

Among the models with absorbing states only a few
ceptions are known that do not belong to the DP universa
class. During the past few years it became clear that t
represent a universality class that is different from that
directed percolation. The known examples are the mode
and B of probabilistic cellular automata@12,13#, nonequilib-
rium kinetic Ising models with combined zero- and infinit
temperature dynamics@14#, interacting monomer-dime
models @15#, and branching annihilating walks~BAW’s!
with an even number of offspring@16–20#. The common
feature of all these models is that the number of particles~or
kinks! is conserved mod2. Therefore the class is sometim
referred to as theparity-conserving~PC! class.

Initially parity conservation was thought to be the reas
for the emergence of the different universality class. Ho
ever, Park and Park@21# recently showed that in the examp
of an interacting monomer-dimer model a weak pari
conserving external field can force the system back to the
class. They concluded that the essential property of the c
551063-651X/97/55~1!/219~8!/$10.00
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is not parity conservation, but a symmetry among differe
absorbing states.

In order to address this question, we propose two o
dimensional models that exhibit a phase transition from
active to an inactive phase consisting ofn equivalent absorb-
ing states. These models generalize two well-known stoch
tic models for directed percolation, namely, the Doman
Kinzel cellular automaton@2# and the contact process@3#.
We can conclude from numerical simulations that forn52
both models belong to the PC class.

The models we define are interesting for various reaso
As generalizations of well-known DP models they give
better physical understanding of models in the PC cla
Moreover, they are defined by ordinary two-site neare
neighbor interactions~rather than three- or four-site interac
tions! and can be generalized easily to both higher dim
sions and a higher number of absorbing states. In addit
unlike previously known models, our models do not expl
itly conserve parity. This confirms that the symmetry amo
the absorbing states is indeed the only essential propert
models in the PC class.

Before defining the models let us present an intuitive id
how DP models can be generalized to models with sev
absorbing states. Directed percolation models are usually
fined on somed-dimensional lattice whose sites can be eith
active ~wet! or inactive ~dry!. If all sites are inactive, the
system is in an absorbing configuration from which it cann
escape. In the presence of active sites, the system evolv
time according to specific local processes. Although mic
scopically these processes may be defined differently, m
of the DP models have the feature in common that their ti
evolution seen on a large scale is subject to the follow
rules.

~a! Inactive~dry! spots are created randomly within activ
~wet! islands.

~b! The boundaries between active and inactive doma
fluctuate in a way that active islands are biased to grow.

Both processes~a! and ~b! compete with each other. De
pending on their probabilities, the system can be in two d
ferent phases. If the probability for~a! is very small, the
system is in theactive phasewhere, starting with a nonzero
density of active sites, active clusters percolate constantly
the probability for ~a! is very large, the system is in th
inactive phasewhere active clusters die out wherefore eve
tually the system enters the absorbing state. At the perc
tion threshold the system goes through a continuous ph
219 © 1997 The American Physical Society
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220 55HAYE HINRICHSEN
transition where the details of the local processes bec
irrelevant and long-range fluctuations can be observed.
cording to the DP conjecture@8#, we assume that all model
with a single absorbing state defined in the spirit of rules~a!
and ~b! belong to the universality class of directed perco
tion.

The main idea of the present work is that a generaliza
of the above rules ton equivalent absorbing states genera
universality classes different from DP, in particular to the P
class in the case of two symmetric absorbing states. Su
generalization can be defined as follows. Let us assume
each inactive site carries a ‘‘color’’ labeled by 1,. . . ,n. The
simplest generalization of the rules~a! and~b! is the follow-
ing.

~i! Inactive spots of random color 1, . . . ,n are created
randomly within active islands.

~ii ! The boundaries between active and inactive doma
fluctuate in a way that active islands grow.

~iii ! Boundaries between inactive domains of differe
colors are not allowed to stick to each other irreversib
They are free to separate again leaving active sites in
tween.

Rules~i! and~ii ! are straightforward generalizations of~a!
and ~b!. Again both processes compete with each other
lead to a phase transition from an active to an inactive ph
Rule ~iii ! is different and distinguishes the different color
Roughly speaking, this rule tells us that between two inac
domains of different colors a thin film of wet sites is pr
served. The importance of this rule becomes obvious
looking at the contrary: If domains of different colors we
allowed to stick to each other irreversibly, the colors wou
then be irrelevant. This would mean that the process is c
patible with the previous rules~a! and~b! and thus belong to
directed percolation. Rule~ii ! allows wet sites between ab
sorbing domains of different colors to survive for a lon
time. This slows down the relaxation towards one of t
absorbing states and therefore we expect systems with
eral absorbing states to be ‘‘more active’’ than usual
models.

Another important requirement is that the rules aresym-
metricunder global permutation of the colors. We will sho
that if this symmetry is broken, one of the colors begins
play a dominant role so that the phase transition is agai
the DP universality class. Although these rules give only
intuitive description rather that a strict definition, they w
help us to define models with several absorbing states w
will be done in the next section.

II. DEFINITION OF THE MODELS

A. Model I: Generalized Domany-Kinzel cellular automaton

In the Domany-Kinzel model@2# the state at a given time
t is specified by binary variables$si%, which can have the
valuesA ~active! andI ~inactive!. At odd ~even! times, odd-
~even-!indexed sites are updated according to specific co
tional probabilities. This defines a cellular automaton w
parallel updates~discrete time evolution! acting on two
independent triangular sublattices~cf. Fig. 1!. The
conditional probabilities in the Domany-Kinzel mod
P(si ,t11usi21,t , si11,t) are given by
e
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P~ I uI ,I !51, ~1!

P~AuA,A!5q, ~2!

P~AuI ,A!5P~AuA,I !5p, ~3!

andP(I usi21 , si11)1P(Ausi21 , si11)51, where 0<p<1
and 0<q<1 are two parameters. Equation~1! ensures that
the configuration. . . ,I ,I ,I , . . . is the absorbing state. Th
process in Eq.~2! corresponds to rule~a! and describes the
creation of inactive~dry! spots within active~wet! islands
with probability 12q. The random walk of boundaries be
tween active and inactive domains is realized by the p
cesses in Eq.~3!. According to rule~b!, DP transitions can be
observed only ifp. 1

2 when active~wet! islands are biased to
grow. The processes and the corresponding probabilities
be summarized in the form of a probability table~cf. Table
I!.

We now define a generalization of the Domany-Kinz
model following the rules~i!–~iii ! ~hereafter referred to a
model I!. This model hasn11 states per site: one activ
stateA and n different inactive statesI 1 ,I 2 , . . . ,I n . The
conditional probabilities are given by (k,l51, . . . ,n; kÞ l )

P~ I kuI k ,I k!51, ~4!

P~AuA,A!512nP~ I kuA,A!5q, ~5!

P~AuI k ,A!5P~AuA,I k!5pk , ~6!

P~ I kuI k ,A!5P~ I kuA,I k!512pk , P~AuI k ,I l !51, ~7!

where we study the symmetric casep1, . . . ,pn5p. Equa-
tions ~4!–~6! are straightforward generalizations of Eqs.~1!–
~3!. The only different process is the creation of active si
between two inactive domains of different colors in Eq.~7!
according to rule~iii !. For simplicity we chose the probabil
ity of this process to be equal to one. We may also us
probability less than one, but it turned out that this does
change the critical properties of the system.

For n51 the model defined above reduces to the origi
Domany-Kinzel model. In Sec. III we will investigate th

FIG. 1. Update in the Domany-Kinzel model.

TABLE I. Probability table for the ordinary Domany-Kinze
model.

si21 , si11 P(Ausi21 , si11) P(I usi21 , si11)

AA q 12q
AI p 12p
IA p 12p
II 0 1
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55 221STOCHASTIC LATTICE MODELS WITH SEVERAL . . .
generalized Domany-Kinzel model withn52 absorbing
states. The corresponding processes and their probabi
are listed in Table II.

B. Model II: Generalized contact process

The one-dimensional contact process is the simplest
ample for a DP model with continuous time evolution@3#. Its
dynamics is defined by nearest-neighbor processes that o
spontaneously due to specific rates~rather than probabili-
ties!. In numerical simulations models of this type are us
ally realized by random sequential updates. This means
a pair of sites$si ,si11% is chosen at random and an update
attempted according to specific transition ra
w(si ,t1dt , si11,t1dtusi ,t , si11,t). Each attempt to update
pair of sites~see Fig. 2! increases the timet by dt51/N,
whereN is the total number of sites. One time step~sweep!
therefore consists ofN such attempts. The contact process
defined by the rates

w~A,I uA,A!5w~ I ,AuA,A!5l, ~8!

w~ I ,I uA,I !5w~ I ,I uI ,A!5m, ~9!

w~A,AuA,I !5w~A,AuI ,A!51, ~10!

wherel.0 andm.0 are two parameters~all other rates are
zero!. Equation~8! describes the creation of inactive~dry!
spots within active~wet! islands corresponding to rule~a!.
Equations~9! and~10! describe the shrinkage and growth
active islands according to rule~b!. In order to fix the time
scale, we chose the rate in Eq.~10! to be equal to one. The
active phase is restricted to the regionm,1 where wet is-
lands are likely to grow.

As in the case of the Domany-Kinzel model, we define
generalization of the contact process by introducingn differ-

TABLE II. Probability table for the generalized Domany-Kinz
model with two absorbing states.

s1 ,s2 P(Aus1 ,s2) P(I 1us1 ,s2) P(I 2us1 ,s2)

AA q 12q/2 12q/2
AI1 p 12p 0
AI2 p 0 12p
I 1A p 12p 0
I 2A p 0 12p
I 1I 1 0 1 0
I 1I 2 1 0 0
I 2I 1 1 0 0
I 2I 2 0 0 1

FIG. 2. Update in the contact process.
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ent inactive statesI 1 ,I 2 , . . . ,I n . The dynamics of the gen
eralized model~model II! is defined by the rates

w~A,I kuA,A!5w~ I k ,AuA,A!5l/n, ~11!

w~ I k ,I kuA,I k!5w~ I k ,I kuI k ,A!5mk , ~12!

w~A,AuA,I k!5w~A,AuI k ,A!51, ~13!

w~ I k ,AuI k ,I l !5w~A,I l uI k ,I l !51, ~14!

where k,l51, . . . ,n and kÞ l ~all other rates are zero!.
Again we consider the symmetric casem1 , . . . ,mn5m.
Equations~11!–~13! are generalizations of Eqs.~8!–~10!.
Rule ~iii ! is implemented by Eq.~14!, which describes the
creation of active sites between two inactive domains of d
ferent colors. Forn51 the model defined above is reduce
to the usual contact process~8!–~10!.

C. Phase diagrams

The phase diagrams of both models are shown in Fig
The active~inactive! phase is characterized by a nonze
~vanishing! density of active sites in the thermodynam
limit. Both phases are separated by a phase transition
~the bold line in Fig. 3!. The dashed line indicates the corr
sponding phase transition for a single absorbing state. C
paring both lines we notice that generally models with tw
absorbing states tend to be more active than their DP co
terparts~for exceptions see Ref.@22#!.

We checked numerically that as in DP the critical exp
nents of the generalized models are the same all along
phase transition line. The only exceptions are the end
points (p,q)5~1/2, 1! and (l,m)5(0,1), where the transi-
tion lines forn51 andn52 intersect~marked byA in Fig.
3!. In these points rule~i! is no longer valid and the entirely
active configuration . . .AAA . . . emerges as an additiona
absorbing state. This leads to a different universality cla
which, in the case ofn51, is referred to as compact directe
percolation.

D. General properties

A typical time evolution of models with two absorbin
states is shown in Fig. 4. In the active phase (l,lc) small
inactive islands of random color are generated and exist o

FIG. 3. Phase diagrams of models I and II for two absorb
states. The dashed lines indicate the corresponding transition
for directed percolation. The explanation of the pointsA, B, and
C can be found in the text.
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222 55HAYE HINRICHSEN
briefly. Approaching the phase transition their size and li
time grows, while the density of active sites decreases.
tice that according to rule~iii ! a thin film of active sites
separates different inactive domains.

An important property of models with several absorbi
states is a very different relaxation towards the absorb
configuration. For DP in the inactive phase the order para
eter r is known to decayexponentiallyin time. However,
this is not true for models with two absorbing states.
shown in Fig. 4 (l.lc), starting from a random initial con
figuration, large domains of different colors are forme
These domain walls survive and diffuse until they annihil
mutually. In this annihilation process the density of doma
walls is known to decayalgebraically like r(x);t21/2 @23#.
Because of the slow relaxation numerical simulations
models with several absorbing states are more difficult
perform.

It should be emphasized that in the models defined ab
there is no explicit parity conservation on the microsco
level: In each local update no more than one site is modi
@cf. Eqs. ~11!–~14!#. Therefore it is impossible to creat
more than two kinks or particles per update~a nontrivial
parity-conserving dynamics requires the generation of
least three kinksX→3X, 2X→0). Nevertheless, the annih
lating domain walls described above, by their very natu
obey a parity-conserving dynamics. Therefore parity cons
vation can still be seen on large scales. We will return to t
observation in Sec. IVC.

III. TWO SYMMETRIC ABSORBING STATES:
NUMERICAL RESULTS

A. Monte Carlo simulations

In order to measure the critical exponents of models I a
II in the case of two absorbing states, we perform dynam
Monte Carlo simulations~see, e.g.,@19#!. We use defect dy-
namics, i.e., we start with an initial configuration where
sites are in the inactive stateI 1 except for one active site in
the center. The system then evolves along the dynamic r
of the model. For various values of the parameters near p
B in Fig. 3 we perform 106 independent runs up to 5000 tim
steps. However, most of them stop earlier because the sy
enters into the absorbing configuration where all sites ar
the stateI 1. ~In an infinite system, there is no way to rea
the other absorbing configurationI 2!. In order to avoid finite-
size effects, we adjust the system size after each time
according to the actual size of the active cluster. As usua

FIG. 4. Simulation of model II forn52 starting from a random
initial condition. The two different types of inactive domains a
shown in black and gray. The active sites between the domains
represented by white pixels.
-
o-

g
-

s

.
e

f
o

ve
c
d

t

,
r-
is

d
ic

l

es
int

em
in

ep
in

this type of simulation, we measure the survival probabil
P(t), the number of active sitesN(t), and the mean squar
of spreading from the originR2(t) averaged over active runs
At criticality, these quantities are expected to scale algeb
ically in the long-time limit

P~ t !;t2d, N~ t !;th, R2~ t !;tz. ~15!

The critical exponents are related to the exponentsb, n' ,
andn uu by

d5
b

n uu
, z5

2n'

n uu
~16!

and obey the scaling relation

4d12h5dz. ~17!

The quantities~15! show straight lines in double logarithmi
plots. Off criticality, the lines are curved. In order to g
precise estimates for the scaling exponents, it has been u
to consider the local slopes of the curves by introducing
effective exponents

2d~ t !5
log10@P~ t !/P~ t/b!#

log10b
~18!

and similarlyh(t) and z(t), where log10b is the distance
used for estimating the slope. Choosingb55, we measured
the effective exponents of both models for various values
q5p andl5n. The results of our simulations are shown
Figs. 5 and 6. Off criticality, the curves ford(t) andh(t)
show negative or positive curvature. The figures give us
estimate of the critical pointspc50.5673(5) for model I and
lc50.628(2) for model II. The estimates for the critical e
ponents ared50.285(10),h50.00(1), andz51.15(1) for
model I andd50.29(1), h50.00(1), and z51.15(1) for
model II.

The exponentb has been obtained directly in static sim
lations by measuring the steady-state densityr in the active
phase near the critical point. Although this method is kno
to be quite inaccurate to determineb and we measured only
over one decade ine, we found the reasonable value
b50.90(5) for model I andb50.93(5) for model II.

The estimates of the critical exponents agree with pre
ous results for models in the PC class~cf. Table III!. Thus,
from our numerical results we can conclude that forn52
both models belong to the PC universality class.

B. Symmetry-breaking field

Recently Park and Park showed in the example of an
teracting monomer-dimer model that if the symmetry amo
the absorbing states is broken by an external field, the
universality class is recovered@21#. In order to verify this
observation, we introduce an external field by modifying t
growth rates for inactive islands of different colors. This c
be done by choosing differentpk in Eq. ~6! @mk in Eq. ~12!#.
Because of the different growth rates, one of the colors
going to play a dominant role wherefore in the large-sc
limit the system evolves as if it had only a single absorb
state.

re
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55 223STOCHASTIC LATTICE MODELS WITH SEVERAL . . .
FIG. 5. Numerical results for
model I. The effective exponent
d(t), h(t), andz(t) are obtained
from dynamic simulations forp
5q50.5665, 0.5670, . . . ,0.5685.
The densitiy of active sitesr(e) is
measured in static simulations fo
different values ofe5p2pc . The
slope of the line in the log-log plot
gives an estimate for the expone
b.
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To demonstrate this, we repeat the above simulation
model I for p1,25q60.02. The critical point is shifted to
qc50.6245(10). The exponents we measure~cf. Fig. 7! are
d50.16(2), h50.32(4), z51.27(4), and b50.28(1),
which agree with the DP exponents@18# d50.159(1),
h50.314(1), z51.266(2), andb50.2765(1).

If the symmetry of a model withn.2 absorbing states i
partially broken, a subset ofm colors starts to play a domi
nant role. We expect that such a system behaves at critic
like a model withm absorbing states.

IV. OTHER SPECIAL CASES

A. Compact clusters

As mentioned before, the Domany-Kinzel model and
contact process have a line in their phase diagram where
of

ity

e
he

entirely active configuration emerges as an additional
sorbing state. On this line active clusters are not fractal
compact, wherefore it is called the compact directed per
lation line. Here the dynamical processes are exactly s
able by reducing them to an annihilation-diffusion process
kinks 2X→0. Although this leads to a different universalit
class at the phase transition point~point A in Fig. 3!, com-
pact DP has been used in many cases to improve the un
standing of ordinary DP.

A similar situation exists in generalized models with se
eral absorbing states. The fact that the transitionA point is
identical to that of ordinary compact DP indicates that t
point is exactly solvable in all cases. However, the trans
tion into a kink language is slightly more complicated. Sin
kinks between inactive domains of different colors cann
exist @rule ~iii !#, only n types of kinksXk between active and
FIG. 6. Results of analog
simulations of model II. The pa-
rameters vary in the range
l5m50.624, 0.626, . . . ,0.632.
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224 55HAYE HINRICHSEN
inactive domains (AIk , I kA) play a role. These kinks have t
occur in pairs and undergo an annihilation-diffusion proc
2Xk→0 ~kinks of different types cannot annihilate!. It is
important that there is no more generation of randomly c
ored inactive domains. Therefore dynamical simulatio
such as those in Sec. III, starting from an initial configurat
with only one type of inactive sites, yield the same results
all n, i.e., d51/2 andz51. However, compact percolatio
processes are known to depend strongly on initial conditi
so that generally the situation may be more complicated

B. Simulations in higher dimensions

The models presented in this paper can easily be gen
ized to higher dimensions. This is particularly simple in t
case of model II since its definition~11!–~14! can be used in
any dimension. In simulations we observed that ford52 this
system has a phase transition, although the relaxation
wards one of the absorbing states in the inactive phas

TABLE III. Critical exponents of models in the PC class. Th
asterisks indicate values measured in kink dynamics where a di
ent scaling relation holds.

Model d h z b
Known models:

A andB @12# 0.27(8) 0.6(2)
BAW n52 @13# 0.283(16) 0.272(12)* 1.11(2) 0.94(6)
BAW n52 @19# 0.285(2) 0.000(1) 1.141(2) 0.92(3)
BAW n54 @18# 0.286(2) 0.000(1) 1.147(4) 0.922(5
kinetic Ising @14# 0.27(2) 0.30(2)* 1.14(2) 0.80(8)
dynamic BAW @22# 0.287(1) 0.000(3) 1.155(5)
MDM @15# 0.29(2) 0.00(2) 1.34(20) 0.88(3)

Present work
I 0.285(10) 0.00(1) 1.15(1) 0.90(5)
II 0.29(1) 0.00(1) 1.15(1) 0.93(5)
s

l-
s

r

s

al-

o-
is

extremely slow. Figure 8 shows typical configurations in t
active phase near criticality. While in ordinary DP activ
clusters are separated spatially, active sites in tw
dimensional models with two absorbing states are arran
in fractal ‘‘lines’’ along the boundaries of inactive island
Repeating the simulations described above on a 80380 lat-
tice we obtainedlc50.99(1), d50.9(1),h50.00(5), and
z51.0(1). These results agree roughly with the mean-fie
exponentsd51,h50, z51 andb51 ~see Sec. IV C!. There-
fore, we conjecture that 1,dc<2 is the upper critical di-
mension of systems with two absorbing states.

C. Relation to BAW’s

We already mentioned that models I and II have the sa
critical behavior all along the phase transition line~except
pointA in Fig. 3!. Moving along this line we can control th
mean size of active islands, which is infinite at pointA, a few
sites at pointB, and one site at pointC ~in model II the latter
case corresponds to takingl→`). In one dimension point
C can be related to branching walk models since each ac
site can be interpreted as a single walker. Forn51 these
walkers diffuse and interact by 2X↔X, X→0, which results
in a DP process. Forn>2 the situation is more complicated
Let us denote byXjk a walker separating inactive domain
I j andI k . Then the processes areXjk↔XjlXlk ~with random
l ) andXj j→0. These processes clearly do not conserve p
ity. However, because ofXj j→0 only walkers between do
mains of different colorjÞk survive for a long time@cf. rule
~iii !#. Hence, forn52 the majority of walkers react like

X12→X11X12→X12,

X12→X11X12→X12X21X12,

X12X21→0

r-
FIG. 7. Symmetry-breaking
field: simulation of model I for
slightly different growth rates
(p1,25q60.02). DP exponents
are recovered.
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~with analog reactions forX21). Thus, in a long-time limit
the walkers undergo an effective reaction of the ty
X→3X, 2X→0, which is a BAW with two offspring in one
dimension.

The relation to BAW modes is even more general a
holds not only at pointC but everywhere on the phase tra
sition line except for pointA. The walkers then have to b
identified with domain walls separating inactive domains
different colors. At first glance this seems to be contrad
ing: Domain walls, by their very definition, obey a loc
parity-conserving dynamics. On the other hand, it is obvio
that the local processes do not conserve parity. Howe
domain walls in our models are extended objects. Th
thickness fluctuates and varies along the phase transition
from typically one site at pointC up to infinitely many sites
at pointA. It is important to notice that the domain wal
simply cannot be identified with active islands~which may
also occur between inactive domains of the same color! but
require a more complicated definition. Although there is
microscopic parity-conservation, a careful analysis sho
that the dynamical rules ensure that all microscopic p
cesses violating parity conservation have a very short l
time. This is the reason why an effective parity-conserv
dynamics can be recovered in the limit of large scales in t
and space.

In higher dimensionsd>2 the physical properties o
BAW’s with an even number of offspring are governed
the mutual annihilation of the walkers@24#. However, the
models presented in this paper behave very differently
higher dimensions, which makes it impossible to relate th
to BAW’s. As shown in Fig. 8, the active sites in models
and II arrange themselves as (d21)-dimensional surface
separating inactive domains of different colors. Thus th
cannot be interpreted as pointlike random walkers. Ind>2
dimensions we therefore expect BAW’s with an even nu
ber of offspring to be in a different universality class fro
the present models.

D. More than two absorbing states

No results were obtained forn>3 symmetric absorbing
states in one dimension. It turned out that it is impossible
determine the critical point because the plots ford(t),
h(t), andz(t) show only one type of curvature. This obse
vation agrees with recent results obtained for anN-species
generalization of BAW models with an even number of o

FIG. 8. Simulation snapshot of two-dimensional systems w
one and two absorbing states in the active phase near critica
White dots denote active sites.
e
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spring@20#. ForN>2 these models are always in the acti
phase and their critical exponents are described by yet
other universality class.

E. Mean-field approximation

Denoting byrk the density of inactive sitesI k , the pro-
cesses in model II imply the mean-field equation

]

]t
rk5

2l

n
r0
21mr0rk1rk

22rk , ~19!

wherer0512( j51
n r j . Choosingl5m, the critical point is

lc51 for n51 and lc5` for n>2, which means that
mean-field models with more than two absorbing states
always in the active phase~see also Ref.@20#!. For all n the
density of active sitesr0 scales like (l2lc)

b with the
mean-field exponentb51. This is close to the measure
valuesb;0.9 in the model with two absorbing states, whi
indicates that we are already close to the upper critical
mension.

V. SUMMARY AND DISCUSSION

We have shown by the example of the Domany-Kinz
model and the contact process that lattice models for dire
percolation can be generalized to models withn symmetric
absorbing states. Numerical simulations lead to the con
sion that such models in one dimension with two absorb
states belong to the PC universality class. Since these mo
do not explicitly conserve any quantity mod2 they show th
rather than parity conservation, the symmetry among the
sorbing states is the origin for the emergence of a differ
class. As soon as this symmetry is broken, the critical beh
ior jumps back to DP.

The symmetry used in our models is the group of perm
tationsSn . No reliable numerical results could be obtain
for S3 and higher symmetries. However, one may also int
duce other symmetries such as cyclic groups~e.g.,Z3) and
investigate whether they define different universality clas
~cyclic symmetries of this type appear, e.g., in the thr
candidate voter model@25#!. It would be also interesting to
examine models with more than one symmetric active st

For a better understanding it would be desirable to find
appropriate field-theoretical description of the model. F
BAW’s with an even number of offspring this has been do
recently in Ref.@20#. There are surprising results; in particu
lar one has two different critical dimensions: one of the
(dc154/3) related to the properties of active clusters and

other (dc252) related to the annihilation process. Althoug
the application of this theory to the present type of mo
may not be transparent, Cardy and Ta¨uber were able to iden
tify an S2 symmetry on an operator level. This again ind
cates that this symmetry plays an important role in the
class.

A field theory for the present type of model should
different from that of BAW’s because of its different phe
nomenology in higher dimensions~see Secs IVB and IVC!.
Nevertheless, both theories should give identical results
one dimension. The simplest ansatz for such a field the

h
ty.
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would be to add a diffusionlike term andn noise fields to the
mean-field equations

]

]t
rk~x,t !5

2l

n
r0
2~x,t !1mr0~x,t !rk~x,t !1rk

2~x,t !

2rk~x,t !1D¹2rk~x,t !1hk~x,t !. ~20!

However, even if this were correct, the derivation of t
correlations in the noise remains a highly nontrivial proble
Therefore, the development of appropriate field theories
,

.

,

ys
,
d

.

.
a

challenge towards a better understanding of universa
classes appearing in systems with several absorbing sta
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@4# F. Schlögl, Z. Phys. B253, 147 ~1972!.
@5# H. Takayashu and A. Y. Tretyakov, Phys. Rev. Lett.68, 3060

~1992!; I. Jensen, Phys. Rev. E47, 1 ~1993!.
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