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Stochastic lattice models with several absorbing states
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We study two models wittn equivalent absorbing states that generalize the Domany-Kinzel cellular au-
tomaton and the contact process. Numerical investigations show that-fdrboth models belong to the same
universality class as branching annihilating walks with an even number of offspring. Unlike previously known
models, these models have no explicit parity conservation [84063-651X97)07401-1

PACS numbd(s): 05.70.Jk, 05.70.Ln, 64.60.Ak

I. INTRODUCTION is not parity conservation, but a symmetry among different
absorbing states.

The study of stochastic lattice models exhibiting a con- In order to address this question, we propose two one-
tinuous phase transition from an active phase into an absorlgdimensional models that exhibit a phase transition from an
ing state is a field of growing interest. In these models theactive to an inactive phase consistingroéquivalent absorb-
dynamical processes take place close to an absorbing stateg states. These models generalize two well-known stochas-
i.e., a configuration once reached, the system cannot escafile models for directed percolation, namely, the Domany-
from. Most of them belong to the universality class of di- Kinzel cellular automatori2] and the contact proces8].
rected percolation(DP); the best known examples are DP We can conclude from numerical simulations that fer 2
lattice models[1], the Domany-Kinzel cellular automaton both models belong to the PC class.

[2], the contact proceg8], Schiagl’s first and second model The models we define are interesting for various reasons.
[4], and branching annihilating walks with an odd number ofAs generalizations of well-known DP models they give a
offsprings[5]. In a field-theoretical formulation these models better physical understanding of models in the PC class.
can be related to Reggeon field thep8y, which was proven Moreover, they are defined by ordinary two-site nearest-
to be in the same universality class as directed percolationeighbor interactiongrather than three- or four-site interac-
[7]. tions) and can be generalized easily to both higher dimen-

The variety of DP models led Janssen and Grassberger gons and a higher number of absorbing states. In addition,
the conjecture that in one-component models all continuousnlike previously known models, our models do not explic-
phase transitions from an active phase tairggleabsorbing itly conserve parity. This confirms that the symmetry among
state are in the DP universality clag8]. However, the the absorbing states is indeed the only essential property of
known examples for DP include even more complicated sysmodels in the PC class.
tems, e.g., multicomponent systef8$ and models with sev- Before defining the models let us present an intuitive idea
eral absorbing statdd0]. Some models that were initially how DP models can be generalized to models with several
thought to be in different classes were later found to belongbsorbing states. Directed percolation models are usually de-
to the DP class as weJlL1]. Thus the directed percolation fined on somel-dimensional lattice whose sites can be either
universality class is extremely robust and covers a wideactive (wet) or inactive (dry). If all sites are inactive, the
range of models. system is in an absorbing configuration from which it cannot

Among the models with absorbing states only a few ex-escape. In the presence of active sites, the system evolves in
ceptions are known that do not belong to the DP universalitgime according to specific local processes. Although micro-
class. During the past few years it became clear that thegcopically these processes may be defined differently, most
represent a universality class that is different from that ofof the DP models have the feature in common that their time
directed percolation. The known examples are the models &volution seen on a large scale is subject to the following
and B of probabilistic cellular automaf42,13, nonequilib-  rules.
rium kinetic Ising models with combined zero- and infinite- (&) Inactive(dry) spots are created randomly within active
temperature dynamicq14], interacting monomer-dimer (wet) islands.
models [15], and branching annihilating walkéBAW's) (b) The boundaries between active and inactive domains
with an even number of offsprinfl6—20. The common fluctuate in a way that active islands are biased to grow.
feature of all these models is that the number of parti@es Both processe&) and(b) compete with each other. De-
kinks) is conserved mod2. Therefore the class is sometimegending on their probabilities, the system can be in two dif-
referred to as thearity-conserving PC) class. ferent phases. If the probability fdia) is very small, the

Initially parity conservation was thought to be the reasonsystem is in theactive phasevhere, starting with a nonzero
for the emergence of the different universality class. How-density of active sites, active clusters percolate constantly. If
ever, Park and PafR1] recently showed that in the example the probability for(a) is very large, the system is in the
of an interacting monomer-dimer model a weak parity-inactive phasevhere active clusters die out wherefore even-
conserving external field can force the system back to the DRually the system enters the absorbing state. At the percola-
class. They concluded that the essential property of the clag®on threshold the system goes through a continuous phase
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transition where the details of the local processes become o S Si , .
irrelevant and long-range fluctuations can be observed. Ac- —g & & &— 1
cording to the DP conjectul@], we assume that all models ‘ . ' E . ’

with a single absorbing state defined in the spirit of rls

and (b) belong to the universality class of directed percola- —e & ' e— 1+
tion. S o S; S S
The main idea of the present work is that a generalization
of the above rules ta equivalent absorbing states generates FIG. 1. Update in the Domany-Kinzel model.
universality classes different from DP, in particular to the PC
class in the case of two symmetric absorbing states. Such a P(I|I,1)=1, (1)
generalization can be defined as follows. Let us assume that
each inactive site carries a “color” labeled by 1.,. ,n. The P(A|AA)=q, 2
simplest generalization of the rulés and(b) is the follow-
ing. P(A[l,A)=P(A[A,1)=p, ()
(i) Inactive spots of random color, 1. . ,n are created
randomly within active islands. andP(l]si_1, Si+1) +P(A|si_1, Si+1) =1, where Gsp=<1
(i) The boundaries between active and inactive domainand O<qg<1 are two parameters. Equati¢t) ensures that
fluctuate in a way that active islands grow. the configuration. .. I,1,1, ... is the absorbing state. The

(iii) Boundaries between inactive domains of differentprocess in Eq(2) corresponds to ruléa) and describes the
colors are not allowed to stick to each other irreversibly.creation of inactive(dry) spots within active(wet) islands
They are free to separate again leaving active sites in bewith probability 1—qg. The random walk of boundaries be-
tween. tween active and inactive domains is realized by the pro-

Rules(i) and(ii) are straightforward generalizations@  cesses in Eq.3). According to rule(b), DP transitions can be
and (b). Again both processes compete with each other andbserved only ifp> 3 when active(wet) islands are biased to
lead to a phase transition from an active to an inactive phasgrow. The processes and the corresponding probabilities can
Rule (iii) is different and distinguishes the different colors. be summarized in the form of a probability takitd. Table
Roughly speaking, this rule tells us that between two inactive).
domains of different colors a thin film of wet sites is pre- We now define a generalization of the Domany-Kinzel
served. The importance of this rule becomes obvious bynodel following the rulegi)—(iii) (hereafter referred to as
looking at the contrary: If domains of different colors were model ). This model hasn+1 states per site: one active

allowed to stick to each other irreversibly, the colors wouldstate A and n different inactive state$,,l,, ... |,. The
then be irrelevant. This would mean that the process is comeonditional probabilities are given bk{=1, ... n; k#1)
patible with the previous rule®) and(b) and thus belong to
directed percolation. Ruléi) allows wet sites between ab- Pl 1) =1, (4)
sorbing domains of different colors to survive for a long
time. This slows down the relaxation towards one of the P(A[A,A)=1-nP(lJA,A)=q, 5
absorbing states and therefore we expect systems with sev-
eral absorbing states to be “more active” than usual DP P(All,A)=P(AJA, 1) =px, (6)
models.

Another important requirement is that the rules ayen- PO, A) =P A L)=1—p,, P(All,l)=1, (7)
metric under global permutation of the colors. We will show )
that if this symmetry is broken, one of the colors begins towhere we study the symmetric cape, ... ,p,=p. Equa-

play a dominant role so that the phase transition is again iffons (4)—(6) are straightforward generalizations of E¢B—
the DP universality class. Although these rules give only ar{3). The only different process is the creation of active sites
intuitive description rather that a strict definition, they will between two inactive domains of different colors in Eg).

help us to define models with several absorbing states whicAccording to ruleiii). For simplicity we chose the probabil-
will be done in the next section. ity of this process to be equal to one. We may also use a

probability less than one, but it turned out that this does not
change the critical properties of the system.
Il. DEEINITION OF THE MODELS Forn=1_ the model defined above redgc_es to t_he original
Domany-Kinzel model. In Sec. lll we will investigate the
A. Model I: Generalized Domany-Kinzel cellular automaton
TABLE |. Probability table for the ordinary Domany-Kinzel

In the Domany-Kinzel modd]l2] the state at a given time model

t is specified by binary variablels;}, which can have the
valuesA (active and! (inactive. At odd (even times, odd-

(evenjindexed sites are updated according to specific condic " >+ PAISi -1, Si+1) PlSi-1, Sit1)
tional probabilities. This defines a cellular automaton withAA q 1—q
parallel updates(discrete time evolution acting on two Al p 1-p
independent triangular sublatticescf. Fig. 1. The |A P 1-p
conditional probabilities in the Domany-Kinzel model | 0 1

P(Si,t+l|sifl,ta Si+1y) are given by
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TABLE Il. Probability table for the generalized Domany-Kinzel Model 1 Model 11
model with two absorbing states. q TR T W T T
- ’ . z?\:xt/ie‘?)a . [ inactive (dry) ]
$1,S P(Als,s;) P(l4]s1,82) P(l2]s1,s2) “oF E 1 "°F E
B 1 B
AA q 1-q/2 1-q/2 o.6F 50 7 ok 1=2_
Aly p 1-p 0 0.4 inactive (dry) 1 o.aF i
Al, p 0 1-p N ‘ B B
1A p 1-p 0 0.2f n=2 e n=1 -
1,A p 0 1-p F c . I active (wet) IR
Illl 0 1 0 0 0 ‘ ‘ol.z ‘ ol.4 ‘ 0.6 ‘ ‘ol.a ‘1‘7 0 0 - ol.z ‘ ‘ol.4 ‘ 0‘.‘6‘ ‘0‘.; ‘)\
141, 1 0 0
(PYPY 1 0 0 FIG. 3. Phase diagrams of models | and Il for two absorbing
I2l2 0 0 1 states. The dashed lines indicate the corresponding transition lines

for directed percolation. The explanation of the poiAtsB, and
C can be found in the text.
generalized Domany-Kinzel model with=2 absorbing

states. The corresponding processes and their probabilitiest inactive states;,l,, ... ,l,. The dynamics of the gen-
are listed in Table II. eralized mode(model 1)) is defined by the rates
B. Model Il: Generalized contact process WA TAA) =Wl AlAA)=n, (1)

The one-dimensional contact process is the simplest ex- WL T AT =W T T A) = g (12
ample for a DP model with continuous time evolut{&. Its
dynamics is defined by nearest-neighbor processes that occur W(AAIA L) =wW(AA|l,A) =1, 13
spontaneously due to specific ratgather than probabili-
ties). In numerical simulations models of this type are usu- W(liG Al D) =w(A T 1) =1, (14
ally realized by random sequential updates. This means that
a pair of sites; ,s;+} is chosen at random and an update is"nere k,/=1,...,n and k#| (all other rates are zero
attempted according to specific transition rates"9@in we consider the symmetric cage,, ... =K.

W(Si t+dts Sit1rradSits Siz10). Each attempt to update a Equations(11)—~(13) are generalizations of Eq$8)—(10).
pair'of sites(éee Fié. 2 increases the time by dt= 1N, Rule (iii) is implemented by Eq(14), which describes the
whereN is the total number of sites. One time steweep creation of active sites between two inactive domains of dif-

therefore consists dfl such attempts. The contact process isferént colors. Fon=1 the model defined above is reduced
defined by the rates to the usual contact proce&®)—(10).

wW(A,I|AA) =w(l,A|AA) =N\, (8) C. Phase diagrams
The phase diagrams of both models are shown in Fig. 3.
w(lL A D =w(l,I{1,A)=u, (9  The active(inactive phase is characterized by a nonzero
(vanishing density of active sites in the thermodynamic
W(AAJA D =W(AA|l,A)=1, (10) limit. Both phases are separated by a phase transition line

(the bold line in Fig. 3 The dashed line indicates the corre-

where\>0 andu>0 are two parametefall other rates are qunding phgse transitiop for a single absorbing state. Com-
zero. Equation(8) describes the creation of inactivery) paring _both lines we notice that generally models with two
spots within active(wet) islands corresponding to rul@). absorbing states t_end to be more active than their DP coun-
Equations(9) and (10) describe the shrinkage and growth of terparts(for exceptions see Ref22]). .
active islands according to rut®). In order to fix the time We checked numerically that as in DP the critical expo-
scale, we chose the rate in Ed0) to be equal to one. The nents of the. gene_rallzed models are th_e same all along.the
active phase is restricted to the regipa<1 where wet is- phgse transition line. The only exceptions are the en_dlng
lands are likely to grow. points (p,q)=(1/2, 1) and (}\.,,u)z(o,l), where thg transi-

As in the case of the Domany-Kinzel model, we define alion lines forn=1 andn=2 intersectmarked byA in Fig.

generalization of the contact process by introdugirgjffer- ~ 3)- In these points rulé) is no longer valid and the entirely
active configuration ..AAA... emerges as an additional

absorbing state. This leads to a different universality class,

‘ S Siv1 P g :
‘ ‘ ‘ which, in the case ofi=1, is referred to as compact directed
—& . . .1 t percolation.
| 3 : " D. General properties
—o—o &——&— 1+dr propert
‘ ‘ §; Sivs ‘ ‘ A typical time evolution of models with two absorbing

states is shown in Fig. 4. In the active phase<(\;) small
FIG. 2. Update in the contact process. inactive islands of random color are generated and exist only
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this type of simulation, we measure the survival probability
P(t), the number of active sited(t), and the mean square
of spreading from the origiR?(t) averaged over active runs.
At criticality, these quantities are expected to scale algebra-
ically in the long-time limit

P(t)~t~% N(t)~t7, R*(t)~t2 (15)

A ey Aoh,

The critical exponents are related to the exponghts, ,

FIG. 4. Simulation of model Il fon=2 starting from a random and v by
initial condition. The two different types of inactive domains are >
shown in black and gray. The active sites between the domains are 5= E 7= <P (16)
represented by white pixels. )’ Y|
: . - S . an th ling relation
briefly. Approaching the phase transition their size and Ilfe-a d obey the scaling relatio
time grows, while the density of active sites decreases. No- 46+27=dz. (17)
tice that according to rulgiii) a thin film of active sites
separates different inactive domains. The quantitie15) show straight lines in double logarithmic

An important property of models with several absorbingpiots. Off criticality, the lines are curved. In order to get
states is a very different relaxation towards the absorbingyrecise estimates for the scaling exponents, it has been useful

configuration. For DP in the inactive phase the order paramg consider the local slopes of the curves by introducing the
eter p is known to decayexponentiallyin time. However,  effective exponents

this is not true for models with two absorbing states. As
shown in Fig. 4 R >X\.), starting from a random initial con- log; o[ P(1)/P(t/b)]
figuration, large domains of different colors are formed. —o(t)= log;ob
These domain walls survive and diffuse until they annihilate 10
mutually. In this annihilation process the density of domaingng similarly 5(t) and z(t), where loggb is the distance
walls is known to decayplgebraicallylike p(x)~t"*2[23].  sed for estimating the slope. Choosing 5, we measured
Because of the slow relaxation numerical simulations Ofihe effective exponents of both models for various values of
models with several absorbing states are more difficult tqq:p and\ = v. The results of our simulations are shown in
perform. _ _ , Figs. 5 and 6. Off criticality, the curves fa#(t) and 7(t)

It sr_lould be e_m_phas!zed that in the models def_lned ab0_V§h0W negative or positive curvature. The figures give us an
there is no explicit parity conservation on the microscopiCagtimate of the critical points.=0.5673(5) for model | and

level: In each local update no more than one site is modifieq — g g28(2) for model II. The estimates for the critical ex-
[cf. Egs. (11)—(14)]. Therefore it is impossible to create ponents ared=0.285(10),7=0.0Q1), andz=1.15(1) for

more than two kinks or particles per updd@ nontrivial | 4q) | and5=0.291), »=0.0q1), andz=1.15(1) for
parity-conserving dynamics requires the generation of af, qqj 1. ' '
least three kinkX— 3X, 2X—0). Nevertheless, the annihi- 15 6yhoneng has been obtained directly in static simu-

lating domf”“” walls d.escribed "’?bOVe' by their very natureaiiong by measuring the steady-state dengity the active
obgy a panty-conservmg dynamics. Thereforg parity CONSEl5hase near the critical point. Although this method is known
vation can st_lll be seen on large scales. We will return to thi 0 be quite inaccurate to determigeand we measured only
observation in Sec. IVC. over one decade ire, we found the reasonable values
B=0.90(5) for model | ang3=0.93(5) for model II.
. TWO SYMMETRIC ABSORBING STATES: The estimates of the critical exponents agree with previ-
NUMERICAL RESULTS ous results for models in the PC clags$. Table Ill). Thus,
A. Monte Carlo simulations from our numerical results we can conclude that fiet 2

. both models belong to the PC universality class.
In order to measure the critical exponents of models | and

Il in the case of two absorbing states, we perform dynamic
Monte Carlo simulationgsee, e.g.[19]). We use defect dy-
namics, i.e., we start with an initial configuration where all Recently Park and Park showed in the example of an in-
sites are in the inactive statg except for one active site in teracting monomer-dimer model that if the symmetry among
the center. The system then evolves along the dynamic ruldbe absorbing states is broken by an external field, the DP
of the model. For various values of the parameters near pointniversality class is recoverd@1]. In order to verify this

B in Fig. 3 we perform 1®independent runs up to 5000 time observation, we introduce an external field by modifying the
steps. However, most of them stop earlier because the systegnowth rates for inactive islands of different colors. This can
enters into the absorbing configuration where all sites are ibe done by choosing differepy in Eq. (6) [ «, in Eq. (12)].

the statd ;. (In an infinite system, there is no way to reach Because of the different growth rates, one of the colors is
the other absorbing configuratidg). In order to avoid finite- going to play a dominant role wherefore in the large-scale
size effects, we adjust the system size after each time stdjmit the system evolves as if it had only a single absorbing
according to the actual size of the active cluster. As usual irstate.

(18

B. Symmetry-breaking field
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FIG. 5. Numerical results for
model I. The effective exponents
(1), n(t), andz(t) are obtained
from dynamic simulations forp
=0g=0.5665, 0.5670...,0.5685.
The densitiy of active sites(¢) is
measured in static simulations for
different values ok=p—p.. The
slope of the line in the log-log plot
gives an estimate for the exponent

B.

To demonstrate this, we repeat the above simulations aéntirely active configuration emerges as an additional ab-

model | for p; ,=q*+0.02. The critical point is shifted to
g.=0.6245(10). The exponents we meas(ak Fig. 7) are

7=0.324), z=1.274),
which agree with the DP exponenfd8] §=0.1591),

5=0.162),

and 8=0.291),

7=0.3141), z=1.262), and3=0.276F1).

If the symmetry of a model witim>2 absorbing states is
partially broken, a subset ah colors starts to play a domi-

sorbing state. On this line active clusters are not fractal but
compact, wherefore it is called the compact directed perco-
lation line. Here the dynamical processes are exactly solv-
able by reducing them to an annihilation-diffusion process of

kinks 2X— 0. Although this leads to a different universality

nant role. We expect that such a system behaves at criticaligtanding of ordinary DP.

A similar situation exists in generalized models with sev-
eral absorbing states. The fact that the transiflopoint is

like a model withm absorbing states.

IV. OTHER SPECIAL CASES

A. Compact clusters

3(t)

-0.28F
-0.29F
-0.3 F

-0.311

-0.32

1 1 1 1
0 0.0005 0.0010 0.0015 0.0020

T Y T T

z(Df
1.155%
1.15
1.145F
1.14

T

1.135

1.13 ' . ' '

0 0.0005 0.0010

0.0015 0.0020

-0.03 L L L

class at the phase transition po{pbint A in Fig. 3), com-
pact DP has been used in many cases to improve the under-

identical to that of ordinary compact DP indicates that this
point is exactly solvable in all cases. However, the transla-
tion into a kink language is slightly more complicated. Since
As mentioned before, the Domany-Kinzel model and thekinks between inactive domains of different colors cannot
contact process have a line in their phase diagram where thexist[rule (iii )], only n types of kinksX, between active and

A=0.632

0 0.0005 0.0010 0.0015 0.0020 1/t

0.01 0.015 0.02 0.03 0.05 0.

FIG. 6. Results of analog
simulations of model Il. The pa-
rameters vary in the range
N=u=0.624, 0.626. . .,0.632.



224 HAYE HINRICHSEN 55

TABLE lII. Critical exponents of models in the PC class. The extremely slow. Figure 8 shows typical configurations in the
asterisks indicate values measured in kink dynamics where a differactive phase near criticality. While in ordinary DP active

ent scaling relation holds. clusters are separated spatially, active sites in two-
dimensional models with two absorbing states are arranged
Model 9 7 z B in fractal “lines” along the boundaries of inactive islands.
Known models: Repeating the simulations described above on & &0 lat-
A andB [12] 0.27(8) 0.6(2) tice we obtainech .=0.991), §=0.9(1), »=0.0Q(5), and

_ =1.0(1). These results agree roughly with the mean-field
BAW n=2 [13] 0.283(16) 0.272(12) 1.11(2) 0.94(6) *Z oo e B
BAW n—2[19]  0.285(2) 0.000(1) 1.141(2) 0.92(3) SXPonent=1,7=0,z=1andf=1(see Sec. IV There-
BAW n=4 [18] 0.286(2) 0.000(1) 1.147(4) 0.922(5) fore, we conjecture th_at<1dcs2 is the upper critical di-
Kinetic Ising[14] 027(2) 0.30(2) 1.14(2) 0.80(8) mension of systems with two absorbing states.

dynamic BAW[22] 0.287(1) 0.000(3) 1.155(5) _ ,
MDM [15] 029(2) 0.00(2) 1.34(20) 0.88(3) C. Relation to BAW's

Present work We already mentioned that models | and Il have the same
I 0.285(10) 0.00(1) 1.15(1) 0.90(5) critical behavior all along the phase transition lifexcept
I 0.29(1)  0.00(1) 1.15(1) 0.93(5) pointA in Fig. 3. Moving along this line we can control the
mean size of active islands, which is infinite at pota few
sites at poinB, and one site at poir@ (in model |l the latter
inactive domainsAl,, I, A) play a role. These kinks have to case corresponds to taking—). In one dimension point
occur in pairs and undergo an annihilation-diffusion proces§ can be related to branching walk models since each active
2X,—0 (kinks of different types cannot annihilatelt is  Site can be interpreted as a single walker. Rerl these
important that there is no more generation of randomly colwalkers diffuse and interact byX2— X, X—0, which results
ored inactive domains. Therefore dynamical simulationgn & DP process. Far=2 the situation is more complicated.
such as those in Sec. lIl, starting from an initial configurationLet us denote byX;, a walker separating inactive domains
with only one type of inactive sites, yield the same results for ; andl.. Then the processes axg.— X; X (with random
all n, i.e., §=1/2 andz=1. However, compact percolation 1) andX;;— 0. These processes clearly do not conserve par-
processes are known to depend strongly on initial conditiongy. However, because of;;—0 only walkers between do-
so that generally the situation may be more complicated. mains of different colof # Kk survive for a long timgcf. rule

(iii)]. Hence, fom=2 the majority of walkers react like

B. Simulations in higher dimensions
o _ 12— X11:X12— X12,
The models presented in this paper can easily be general-

ized to higher dimensions. This is particularly simple in the

case of model Il since its definitiofli1)—(14) can be used in X1 X11X 10— X 19X 21X 12,
any dimension. In simulations we observed thatder2 this

system has a phase transition, although the relaxation to-

wards one of the absorbing states in the inactive phase is X19X57—0
() f »
-0.12f -
-0.14f 2
-0.16F -
-0.18F 2
-0.2 F -
0225 | | . | A T T T FIG. 7. Symmetry-breaking
’ 0.02 0.04 0.06 0.08 ]/t ’ 0.02 0.04 0.06 0.08 ]/t field: simulation of model | for
slightly different growth rates
Z(t); ' ' ' ' 1 p(®) (p12=9*0.02). DP exponents
1.32F ] i are recovered.
1.3 E 0.45
1.28F p=0.6252 E
g 0.40
1.26fF E
1.24F J 0.35
1.22; p=0.6236 ] 0.30
1.2 E NP EP R R I 1 | PR I ! L

0.02 0.04 0.06 0.08 ]/t 0.01 0.015 0.02 0.03 €



55 STOCHASTIC LATTICE MODELS WITH SEVERAL . .. 225

spring[20]. For N=2 these models are always in the active
phase and their critical exponents are described by yet an-
other universality class.

E. Mean-field approximation

Denoting byp, the density of inactive sitek,, the pro-
cesses in model Il imply the mean-field equation

d 2\

_ 2 2
Z1Pk= "y Pot PPkt P P (19

n=1 (DP)

FIG. 8. Simulation snapshot of two-dimensional systems with

e . iy L
one and two absorbing states in the active phase near criticalit}y.vheref)o_l 2j_1pj- Choosing\ =, the.cr|t|cal point Is
White dots denote active sites. Ac=1 for n=1 and A= for n=2, which means that

mean-field models with more than two absorbing states are

(with analog reactions foK,y). Thus, in a long-time limit ~aways in the active phaseee also Ref.20]). For alln the
the walkers undergo an effective reaction of the typedensity of active siteg, scales like §—\c)? with the
X—3X, 2X—0, which is a BAW with two offspring in one Mean-field exponeng=1. This is close to the measured
dimension. valuesB~0.9 in the model with two absorbing states, which
The relation to BAW modes is even more general andndica_tes that we are already close to the upper critical di-
holds not only at poinC but everywhere on the phase tran- Mension.
sition line except for poinA. The walkers then have to be
identified with domain walls separating inactive domains of
different colors. At first glance this seems to be contradict-
ing: Domain walls, by their very definition, obey a local  we have shown by the example of the Domany-Kinzel
parity-conserving dynamics. On the other hand, it is obviousnodel and the contact process that lattice models for directed
that the local processes do not conserve parity. Howevepercolation can be generalized to models witisymmetric
domain walls in our models are extended objects. Theigpsorbing states. Numerical simulations lead to the conclu-
thickness fluctuates and varies along the phase transition lingon that such models in one dimension with two absorbing
from typically one site at poin€ up to infinitely many sites  states belong to the PC universality class. Since these models
at pointA. It is important to notice that the domain walls do not explicitly conserve any quantity mod2 they show that
simply cannot be identified with active islandshich may  rather than parity conservation, the symmetry among the ab-
also occur between inactive domains of the same gdlot  sorbing states is the origin for the emergence of a different
require a more complicated definition. Although there is noclass. As soon as this symmetry is broken, the critical behav-
microscopic parity-conservation, a careful analysis showsor jumps back to DP.
that the dynamical rules ensure that all microscopic pro- The symmetry used in our models is the group of permu-
cesses violating parity conservation have a very short lifetationsS,. No reliable numerical results could be obtained
time. This is the reason Why an effective parity-comserveq:or 83 and h|gher Symmetries_ However, one may also intro-
dynamics can be recovered in the limit of large scales in timgjyce other symmetries such as cyclic grogps)., Z;) and
and space. investigate whether they define different universality classes
In higher dimensionsd=2 the physical properties of (cyclic symmetries of this type appear, e.g., in the three-
BAW's with an even number of offspring are governed by candidate voter modgPR5]). It would be also interesting to
the mutual annihilation of the walkef24]. However, the examine models with more than one symmetric active state.
models presented in this paper behave very differently in For a better understanding it would be desirable to find an
higher dimensions, which makes it impossible to relate themyppropriate field-theoretical description of the model. For
to BAW's. As shown in Fig. 8, the active sites in models | BAW’s with an even number of offspring this has been done
and Il arrange themselves ad-{1)-dimensional surfaces recently in Ref[20]. There are surprising results; in particu-
separating inactive domains of different colors. Thus theyar one has two different critical dimensions: one of them
cannot be interpreted as pointlike random walkersd#2  (d, =4/3) related to the properties of active clusters and the
dimensions we therefore expect BAW's with an even num-py, o, @d,=2) related to the annihilation process. Although

ber of offspring to be in a different universality class from 2 .
the present models. the application of this theory to t"he present type of_ model
may not be transparent, Cardy ancubar were able to iden-

tify an S, symmetry on an operator level. This again indi-

cates that this symmetry plays an important role in the PC
No results were obtained far=3 symmetric absorbing class.

states in one dimension. It turned out that it is impossible to A field theory for the present type of model should be

determine the critical point because the plots f#(t), different from that of BAW’s because of its different phe-

n(t), andz(t) show only one type of curvature. This obser- nomenology in higher dimensiorisee Secs IVB and IVC

vation agrees with recent results obtained forNuspecies Nevertheless, both theories should give identical results in

generalization of BAW models with an even number of off- one dimension. The simplest ansatz for such a field theory

V. SUMMARY AND DISCUSSION

D. More than two absorbing states
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would be to add a diffusionlike term amdnoise fields to the challenge towards a better understanding of universality
mean-field equations classes appearing in systems with several absorbing states.

d 2\
— p(X,t)=—p3(x,t) + X, 1) pe(X,t) + p2(x,t
ath( ) n Po(X,1) + mpo(X, 1) pi(X,t) + pic(X,t) ACKNOWLEDGMENTS

—p(X, 1)+ DV2p(X,1) + (X, 1). (20 ,

P P nk | would like to thank U. Alon, E. Domany, M. Evans, Y.

However, even if this were correct, the derivation of theGoldschmidt, A. Honecker, D. Mukamel, Z. Ba and S.
correlations in the noise remains a highly nontrivial problem.Sandow for helpful discussions. This work was supported by
Therefore, the development of appropriate field theories is ¢he Minerva Foundation.
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